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Abstract

In this paper we investigate the mechanisms of temporal instability of non-
Newtonian liquid jets, more specifically viscoelastic liquid jets, with a surface
tension gradient. The dispersion relation between the growth rate and the wave
number for a viscoelastic liquid jet is derived. The effects of various parameters
on the instability behavior are studied. A number of quantitative conclusions
and sensitivities on the instability behavior of viscoelastic jets are investigated.
The present work can provide a good foundation for further investigations of
the instability and breakup of viscoelastic liquid jets in the situation where the
surface tension gradient exists. The applications of such a phenomenon include
a microfluidic inkjet printheads with thousands of nozzles that are thermally
modulated near the nozzle orifice to produce steady steams of picoliter-sized
droplets at kilo-Hertz frequency rates.

PACS number: 47.20.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern developments in the design and utilization of microfluidic devices for fluid transport
have found many applications such as drug design and diagnostic devices in biomedicine
and microdrop generators for image printing. Therefore, it is of interest and importance to
understand the mechanisms of instability and breakup of liquid jets, as the efficiency and
quality of production is strongly dependent on these mechanisms. The capillary instability of
liquid jets has been the subject of numerous studies since the19th century. Rayleigh considered
the breakup of an inviscid cylindrical jet into drops [1, 2]. He used a reference system wherein
the cylinder of liquid was initially at rest and the perturbation applied was spatially periodic.
Under appropriate circumstances, surface tension forces broke the liquid into equally spaced
drops. Rayleigh then applied the conclusions to a moving jet of liquid emanating from a
nozzle. In his work on drop formation Rayleigh linearized his equations by assuming the
variation of the jet radius to be very small compared to the radius itself. This assumption
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becomes invalid, of course, as drop separation occurs. Nonetheless, Rayleigh’s work has given
much insight into the phenomenon of liquid jet breakup. A one-dimensional model of drop
separation has been used for the purpose of better understanding the jet breakup process [3].
In this model, the variables depend on the axial coordinate of the jet and on time. In using such
a model, one assumes that the wavelength of perturbations on the stream is large compared
to the radius (see, for example, [4]). Lee [3] considered the resulting nonlinear equations,
avoiding the low amplitude assumption made by Rayleigh. Using numerical methods his
results show the formation of satellite droplets as well as the main drops.

Notable examples of jet breakup include the jet experiments of Rutland and Jameson [5]
as well as those of Goedde and Yuen [6] for water jets and of Kowalewski [7] for jets of
high-viscosity fluids. A momentous paper by Peregrine et al [8] not only helped to crystallize
some of the theoretical ideas, but also contained the first high-resolution pictures of water
falling from a faucet.

Nonlinear studies have been carried out by Yuen [9] and later by Chaudhary and Redekopp
[10]. A review of the subject can be found in Bogy [11], while recent simulations using
boundary integral techniques are described in Mansour and Lundgren [12]. Viscosity-
dominated flows form a separate but parallel field. Tomotika [13] considered the linear
stability of a stationary cylindrical thread of viscous fluid surrounded by a second viscous
fluid with surface tension acting at the interface. Qualitatively, the stability results are similar
to inviscid studies with a maximally growing wave of the order of the unperturbed thread
radius. A more complete theory, including the effects of nonuniform jet velocities can be
found in Chandrasekhar [14], where it is shown that capillary instability provides linearly
growing waves that scale the jet radius. Recently, Tjahjadi et al [15] have undertaken an
experimental and numerical study of the breakup of viscous cylindrical threads of one fluid
into another. The experiments and the computations show that at the time of breakup the jet
tends to form larger primary drops joined to smaller satellite drops. It is precisely this regime
that we can describe theoretically with excellent qualitative agreement with both computations
and experiments. Besides their intrinsic interest, such solutions can be useful in providing
initial conditions for the continuation of numerical solutions just before the change in topology
necessitated by the pinching. The analytical description of local structures is also useful in
the determination of the effect of additional physicochemical effects such as surface-active
agents or electrical forces on the pinching process. More recently, Eggers [16] provided a
comprehensive review on nonlinear dynamics and breakup of free-surface flows where the
author discussed the theoretical development of this field alongside experimental work, and
outlined unsolved problems.

Currently there is a considerable amount of literature available on Newtonian liquid jet
instability. However, things are more difficult for viscoelastic jets caused by the complex nature
of the constitutive behavior of such a liquid [17–23]. The axisymmetric instability of non-
Newtonian jets was studied by Sterling and Sleicher [20], Lin and Lian [21], Lin and Ibrahim
[22], Brenn et al [23], Liu and Liu [24]. Liu and Liu [24] extended the work on Newtonian
jets done by Li [25] to investigate the mechanisms of temporal instability of viscoelastic liquid
jets with both axisymmetric and asymmetric disturbances, and to explore the differences
between the instabilities of axisymmetric and asymmetric disturbances, concentrating on the
wind-induced regime. Goren and Gottlieb [26] showed that the effect of the non-Newtonian
liquid behavior may be described by a linear analysis when an unrelaxed axial tension is
included in the momentum equation. This leads to an additional term in the dispersion relation
that depends on a non-dimensional elastic tension parameter. Nevertheless, relatively few
authors have studied jet instability caused by spatial variations of surface tension, despite
the practical relevance of this phenomenon [27]. As pointed out by Furlani [27], advances
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in micro-electro-mechanical system (MEMS) technology have enabled the development of
a microfluidic inkjet printhead with thousands of nozzles that are thermally modulated near
the nozzle orifice to produce steady steams of picoliter-sized droplets at kilo-Hertz frequency
rates [27–31]. The ink delivery channel is pressurized and liquid streams are formed from
the jet nozzle. The thermal energy imparted to the jet is carried downstream by its velocity.
Because the surface tension of the jet is temperature dependent, the thermal modulation gives
rise to a time-dependent spatial variation of surface tension along the free surface. Because a
liquid with a high surface tension pulls more strongly on the surrounding liquid than one with
a low surface tension, the presence of a gradient in surface tension will naturally cause the
liquid to flow away from regions of low surface tension, thereby inducing a Marangoni flow
toward regions of higher surface tension. Such a Marangoni flow produces a deformation of
the free surface that ultimately leads to jet breakup and drop formation at a certain distance
above the jet nozzle. The energy supplied to the heater is in the form of an electrical pulse
train. To achieve synchronous drop breakup, only a very small amount of energy is needed
(<1 nJ). The drop size may be precisely controlled by the delay time between the heater pulses
(in conjunction with the orifice diameter and ink flow rate, which is controlled by the applied
pressure).

Furlani [27] studied the temporal instability of an infinite Newtonian microjet that is
subjected to a spatially periodic variation of surface tension along its length. A linear theory
was developed for the temporal instability of such a liquid jet. The variation of surface
tension induced Marangoni flow within the jet and led to breakup and drop formation. An
analytical expression was derived for the behavior of the free surface of the jet. This expression
was useful for parametric analysis of jet instability and breakup as a function of jet radius,
wavelength and fluid properties.

The objective of the present paper is to investigate the mechanisms of temporal instability
of non-Newtonian liquid jets, more specifically viscoelastic liquid jets, with a surface tension
gradient. The constitutive behavior of the viscoelastic jets is represented by Oldroyd’s model
[32, 33]. The present work can provide a good foundation for further investigations of the
instability and breakup of viscoelastic liquid jets under the situation where the surface tension
gradient exits. As we mentioned earlier, applications of such a phenomenon include thermally
driven inkjet. In the following sections, the dispersion relation between the growth rate and
the wave number for a viscoelastic liquid jet will be derived. The effects of various parameters
on the instability behavior are studied. Finally, a number of quantitative conclusions and
sensitivities on the instability behavior of viscoelastic jets are investigated.

2. Mathematical formulation and solutions

Consider a cylindrical jet of viscoelastic liquid of density ρ, surface tension σ and an initial
radius ‘a’, moving at velocity V0 shown in figure 1. The governing equations are written in
a cylindrical coordinate system for convenience. The coordinates are chosen such that the
z-axis is parallel to the moving direction of the liquid jet flow; the r-axis is normal to the liquid
jet with its origin located on the jet axis.

The governing equations of a liquid jet are the conservation laws for mass and momentum,
i.e.,

∂ρ

∂t
+ ∇ · ρV = 0 (1)

ρ

(
∂

∂t
+ V · ∇

)
V = −∇ · T , (2)
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Figure 1. Liquid jet schematics where h(z, t) defined the dynamic profile of the jet.

where t is time, V is the jet velocity vector, T is the total stress tensor given as T = pI + τ ;
here p is the pressure in the fluid, I is the identity tensor and τ is the viscous stress tensor of
the fluid.

A set of constitutive equations is needed to relate stress and strain rate in order to solve
equations (1) and (2). Here we utilize the 8-constant model developed by Oldroyd [32, 33].
The Oldroyd model is an empirical expression that is linear in the stress tensor, but contains all
allowable products of stresses and velocity gradients. Because it can give qualitatively correct
results in a wide variety of flow situations, it has been popular for developing the numerical
techniques for non-Newtonian fluid dynamics. More discussion on the Oldroyd model and
other models can be found in Bird et al [34].

The 8-constant Oldroyd model is written as

τ + λ1
Dτ

∂t
+

1

2
λ3{γ̇ · τ + τ · γ̇ } +

1

2
λ5tr(τ )γ̇ +

1

2
λ6(τ : γ̇ )I

= −η0

[
γ̇ + λ2

Dγ̇

∂t
+ λ4{γ̇ · γ̇ } +

1

2
λ7(γ̇ : γ̇ )I

]
,

where γ̇ = (∇V )T + ∇V is the strain rate tensor, the superscript ‘T’ indicates the transpose, I
is the unit tensor, Dτ

∂t
is the first contravariant convected time derivative, defined for the stress

tensor τ as
Dτ

∂t
= Dτ

dt
− {(∇V )T · τ + τ · (∇V )}.

Here Dτ
dt

is the material derivative of the stress tensor τ . Similarly, for strain rate, we have

Dγ̇

∂t
= Dγ̇

dt
− {(∇v)T · γ̇ + γ̇ · (∇v)}.

The eight constants in the Oldroyd model are zero shear stress viscosity, η0 and the time
constants λ1, λ2, . . . , λ7. The Oldroyd model can be reduced to the Newtonian model (when
λ1 = λ2 = · · · = λ7 = 0), and other models such as the upper convected Maxwell model,
Oldroyd-B model, second-order fluid model and Gordon–Schowalter model.

We neglect the nonlinear terms and gravitational effects and obtain the following equations
for the incompressible flow:

∇ · V = 0 (3)
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ρ

(
∂

∂t
+ V0 · ∂

∂z

)
V = −∇ · (pI + τ) (4)

τ + λ1

(
∂

∂t
+ V0 · ∂

∂z

)
τ = −η0

[
γ̇ + λ2

(
∂

∂t
+ V0 · ∂

∂z

)
γ̇

]
, (5)

where γ̇ is the strain tensor, η0 is the zero shear viscosity, λ1 is the stress relaxation time and
λ2 is the deformation retardation time.

We study the behavior of the jet when it is subjected to a perturbation. We represent the
free surface of the perturbed jet by

h(z, t) = a + δ(z, t), (6)

where a is the radius of an unperturbed jet and δ(z, t) is the displacement of the free surface
from the equilibrium position.

Because we are interested in the wave motion in the liquid, we seek the solutions for the
velocity vector V as periodic functions in z and complex exponential functions in t, i.e.,

Vr = vr(r) eikz+αt (7)

Vz = vz(r) eikz+αt , (8)

where α is a frequency whose real part represents the wave growth rate of the disturbance,
α is 2π times the disturbance frequency, and −α/k is the wave propagation velocity of the
disturbance in the direction of the liquid flow, and k represents the wave number of the
disturbance in the z direction.

The viscous stress tensor τ , the strain tensor γ̇ , the pressure p and the surface displacement
δ are periodic functions in z and exponential functions in t, i.e.,

τ = T (r) eikz+αt (9)

γ̇ = �̇(r) eikz+αt (10)

p = P(r) eikz+αt (11)

δ = δ0 eikz+αt , (12)

where δ0 is the initial amplitude of the disturbance, which is thought to be much smaller than
the radius a of the jet in the linear stability theory.

Substituting equations (9) and (10) into equation (5), one has

τ = −η(α)γ̇ (13)

where

η(α) = η0
1 + λ2(α + ikV0)

1 + λ1(α + ikV0)
. (14)

Utilizing equation (13) and expressing the governing equations and the velocity vector in
suitable component forms, the momentum equations are obtained in cylindrical coordinates:

ρ

(
∂Vr

∂t
+ V0

∂Vr

∂z

)
= −∂p

∂r
+ η(α)

{
∂

∂r

[
1

r

∂

∂r
(rVr)

]
+

∂2Vr

∂z2

}
(15)

ρ

(
∂Vz

∂t
+ V0

∂Vz

∂z

)
= −∂p

∂z
+ η(α)

{
1

r

∂

∂r

(
r
∂Vz

∂r

)
+

∂2Vz

∂z2

}
. (16)
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And the scalar continuity is given as

1

r

∂

∂r
(rVr) +

∂Vz

∂z
= 0. (17)

The flow field solutions of the above governing equations must satisfy the kinematic and
dynamic boundary conditions at the liquid surface, which can be taken to be r = a (the first-
order approximation for a small displacement of the interface that is due to the disturbance).
Thus, in mathematical form, the kinematic boundary condition requires that

Vr |r=h =
{

∂δ

∂t
+ V0

∂δ

∂z

}∣∣∣∣
r=h

(18)

and the dynamic boundary conditions require that

τrz|r=h = −η(α)

{
∂Vz

∂r
+

∂Vr

∂z

}∣∣∣∣
r=h

= ∂σ(z)

∂z
(19)

(p + τrr )|r=h + pσ =
{
p − 2η(α)

∂Vr

∂r

}∣∣∣∣
r=h

+ pσ = 0, (20)

where

pσ = σ0

a2

(
δ + a2 ∂2δ

∂z2

)
= σ0

a2
(1 − k2a2)δ0 eikz+αt (21)

is the pressure induced by the surface tension, the gradient of surface tension, σ(z) =
σ0 + σ(1 + eikz) eαt produces a marangoni flow toward regions of higher surface tension
which deform the free surface of the jet and ultimately causes jet breakup. In the expression
of σ (z), σ 0 is the unperturbed surface tension of the liquid, σ is a parameter representing
the magnitude of the surface tension disturbance.

Substituting equations (7), (8) and (11) into equations (15), (16), and (17), one can reduce
the partial differential equations (15) to (17) into three ordinary differential equations with
respect to a single variable r. These ordinary differential equations can be solved with the
boundary conditions outlined in equations (19) and (20). The solutions are in the forms of
Bessel functions given below:

Vr =
{[

l2 + k2 − k2σρ

(k2 − l2)η(α)2δ0

]
I1(kr)

I1(ka)

−
[

2k2 − k2σρ

(k2 − l2)η(α)2δ0

]
I1(lr)

I1(la)

}
η(α)

ρ
δ0 eikz+αt (22)

Vz = i

{[
l2 + k2 − k2σρ

(k2 − l2)η(α)2δ0

]
I0(kr)

I1(ka)

−
[

2kl − klσρ

(k2 − l2)η(α)2δ0

]
I0(lr)

I1(la)

}
η(α)

ρ
δ0 eikz+αt (23)

p = −
[
l2 + k2 − k2σρ

(k2 − l2)η(α)2δ0

]
I0(kr)

kI1(ka)

η(α)

ρ
(α + ikV0)δ0 eikz+αt , (24)

where

l2 = k2 +
ρ(α + ikV0)

η(α)
. (25)
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The growth rate equation is derived from the normal stress condition, equation (20), using
equations (14), (21), (22) and (24). After some algebra, we find that

−δ0η
2(k2 + l2)2 I0(ak)

kρI1(ak)
+ σk(k2 + l2)

I0(ak)

(k2 − l2)I1(ak)

+ 4δ0η
2k2l

I0(al)

ρI1(al)
− 2σk2l

I0(al)

(k2 − l2)I1(al)

= δ0[2aη2(k2 − l2) − ρ(1 − a2k2)σ0]

ρa2
. (26)

Equation (26) can be written in terms of the ratio of surface tension disturbance and jet
radius, i.e. σ

δ0

−η2(k2 + l2)2 I0(ak)

kρI1(ak)
+

σ

δ0
k(k2 + l2)

I0(ak)

(k2 − l2)I1(ak)

+ 4η2k2l
I0(al)

ρI1(al)
− 2

σ

δ0
k2l

I0(al)

(k2 − l2)I1(al)

= 2aη2(k2 − l2) − ρ(1 − a2k2)σ0

ρa2
. (27)

For inviscid liquid and when σ = 0, η2 (k2 + l2)2 → ρ2α2, therefore, equation (27) gives

α2 = σ0

ρa3
ka(1 − k2a2)

I1(al)

I0(al)
, (28)

which is Rayleigh’s result [1] for an inviscid liquid jet in a vacuum.
Now we search for a relationship between σ and δ0. The kinematic boundary condition

requires that fluid does not cross the free surface,
D

Dt
(r − δ(z, t)) = 0 at the free surface boundary r = h, (29)

which can be written as
∂δ

∂t
+ Vz

∂δ

∂z
= Vr. (30)

Let

Vz = V 0
z (z, t) + O(r), (31)

then from the continuity condition, equation (17), we have

Vr = −1

2

∂

∂z
V 0

z (z, t)r + O(r2). (32)

Substituting equations (31) and (32) into equation (30) and ignoring the higher order terms in
r, we have

∂δ

∂t
+ V0

∂δ

∂z
= −1

2

∂

∂z
V 0

z (z, t)a. (33)

Using equation (23) and letting r approach to a, we have

V 0
z (z, t) = i

{[
l2 + k2 − k2σρ

(k2 − l2)η(α)2δ0

]
−

[
2kl − klσρ

(k2 − l2)η(α)2δ0

]}
η(α)

ρ
δ0 eikz+αt .

(34)

Substituting equations (12) and (34) into equation (33), we have an equation that determines
the relationship between σ and δ0, which reduces to

σ

δ0
= η(k2 − l2){aηk(k2 + l2)I1(al) − 2I1(ak)[aηk3 + (α + ikV0)ρI1(al)]}

ak3ρ[I1(al) − I1(ak)]
. (35)

7
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Using equation (35), we rewrite equation (27) as

α2ρI0(ak)[ak − 2I1(al)] + 2ηkα{lI0(al)[2I1(ak) − ak]

− kI0(ak)[2I1(al) − ak] + k[I1(al) − I1(ak)]}
= (1 − a2k2)k2σ0[I1(ak) − I1(al)]

a
. (36)

Equations (27) and (34), or equation (36) define the growth rate of the jet. Equation (36) can
be expressed in a dimensionless form as

ᾱ2I0(ak)[ak − 2I1(al)] + 2akZᾱ
Z + λ̄Elᾱ

Z + Elᾱ
{alI0(al)[2I1(ak) − ak]

− akI0(ak)[2I1(al) − ak] + ak[I1(al) − I1(ak)]}
= (1 − a2k2)a2k2[I1(ak) − I1(al)], (37)

where

ᾱ = α√
σ0/(ρa3)

, Z = η0√
σ0ρa

, El = η0λ1

ρa2
, λ̄ = λ2

λ1
. (38)

Here ᾱ is the non-dimensional growth rate, Z is the Ohnersorge number that denotes the ratio
of viscous forces to surface tension force, El is the elastic number which was introduced
by Kroesser and Middleman [35] and later utilized by Brenn et al [23]. The parameter, El
represents a ratio of viscous and elastic time of the liquid jet. The parameter λ̄ denotes the
ratio of deformation retardation to stress relaxation time. According to Bird et al [34], the
values of λ̄ are between 1/9 and 1. It should also be pointed out that ak is the dimensionless
wave number, al can be expressed by the dimensionless parameters in equation (38) as

al =
√

(ak)2 +
ᾱ

Z

Z + El ᾱ

Z + λ̄El ᾱ
. (39)

By setting σ equal to zero in equation (27) and utilizing the dimensionless parameters
defined in equation (38), the dimensionless dispersion equation for zero surface tension
gradient is obtained as[

Z
Z + λ̄El ᾱ

Z + El ᾱ

]2
{

2(ak)2

[
1 −

(
al

ak

)2
]

+ (ak)3

[
1 +

(
al

ak

)2
]2

I0(ak)

I1(ak)
− 4(ak)2(al)

I0(al)

I1(al)

}
= 1 − (ak)2. (40)

3. Results and discussion

In figure 2 we consider the normalized growth rate, ᾱ, determined from equation (37), of a jet of
Separan AP30 solution (aqueous 0.05%). According to the definition given in equations (7)–
(11), the growth rate α represents how fast the velocity and radius of the jet change as a
function of time. Separan is a polyacrylamide frequently used in experiments on viscoelastic
jets. The parameters for the jets are as follows: a = 9.21 × 10−4 m, ρ = 1000 kg m−3, σ 0 =
70.5 × 10−3 N m−1, η0 = 0.11 N s m−2, λ1 = 0.01 s and λ2 = 0.01 s. The jet is subjected to
a surface tension gradient along the jet, which produces a Marangoni flow toward regions of
higher surface tension. There also exists an initial disturbance of jet radius, with magnitude
δ0. Both of these effects further deform the free surface of the jet and ultimately lead to jet
breakup. The dashed line is the growth rate prediction when the spatial variation of surface
tension along the length of the jet is considered. The solid line is the growth rate prediction

8
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)/( 3
0 aρσ

αα =

Dimensionless wave number - ka
0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

Without surface tension gradient

With surface tension gradient

Figure 2. Normalized growth rate, ᾱ as a function of dimensionless wave number, ka. The
parameters are: a = 9.21 × 10−4 m, ρ = 1000 kg m−3, σ 0 = 70.5 × 10−3 N m−1, η0 = 0.11
N s m−2, λ1 = 0.01 s , λ2 = 0.01 s, which yield corresponding dimensionless parameters as Z =
0.4317, El = 1.2968, λ̄ = 1.

)/( 3
0 aρσ

αα =

Dimensionless wave number - ka
0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3
λ2/λ1=0.1

λ2/λ1=1

λ2/λ1=0.5

Figure 3. The effect of time constant ratio λ̄ on normalized growth rate, ᾱ as a function of
dimensionless wave number, ka. The parameters are: a = 9.21 × 10−4 m , ρ = 1000 kg m−3 ,
σ 0 = 70.5 × 10−3 N m−1, η0 = 0.11 N s m−2 and λ1 = 0.01 s. The corresponding dimensionless
parameters are Z = 0.4317 and El = 1.2968.

when the spatial variation of surface tension along the length of the jet is not considered. It
is clear that the addition of the gradient of surface tension produces a higher growth rate and
thus a shorter breakup time.

The effect of the stress relaxation time λ1 and deformation retardation time λ2 on growth
rate is shown in figure 3, presented in terms of λ2

λ1
. The curve for λ2

λ1
= 1 is identical to that

9
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Figure 4. Effect of viscosity on normalized growth rate for a Newtonian jet. The parameters are:
a = 9.21 × 10−4 m, ρ = 1000 kg m−3, σ 0 = 70.5 × 10−3 N m−1 and λ1 = λ2 = 0. El is 0 and Z
are given inside the plot.

of a Newtonian jet with the same viscosity (0.11 N s m−2). The parameters for the jet are as
follows: a = 9.21 × 10−4 m, ρ = 1000 kg m−3, σ 0 = 70.5 × 10−3 N m−1, η0 = 0.11 N s m−2

and λ1 = 0.01 s.
The effect of the viscosity on the growth rate of a Newtonian jet is shown in figure 4. The

parameters for the jet are as follows: a = 9.21 × 10−4 m, ρ = 1000 kg m−3, σ 0 = 70.5 ×
10−3 N m−1, λ1 = 0.1 s and λ2 = 0. It is seen from figure 4 that growth rate decreases
with increasing viscosity or the Ohnersorge number. Furthermore, the maximum growth rate
occurs at a different value of wave number as well. For example, when viscosity is equal to
1.1 × 10−3 N s m−2, the maximum growth rate occurs at wave number k = 0.7. When viscosity
is equal to 0.11 N s m−2, the maximum growth rate shifts left, occurring at wave number k =
0.58. When viscosity is equal to 1.1 N s m−2, the maximum growth rate shifts further left,
occurring at wave number k = 0.32.

The effect of the initial viscosity on the growth rate of a non-Newtonian jet is shown in
figure 5. The parameter for the jet are as follows: a = 9.21 × 10−4 m, ρ = 1000 kg m−3, σ 0 =
70.5 × 10−3 N m−1, λ1 = 0.1 s and λ2 = 0.01 s. Similar to the results for a Newtonian jet shown
in figure 5, the growth rate of a non-Newtonian jet decreases with increasing viscosity or the
Ohnersorge number, and the maximum growth rate occurs at a different value of wave number.
In figure 6, we compare the wave number for maximum growth rate for both Newtonian and
non-Newtonian jets at various values of viscosity. For a non-Newtonian jet, the wave number
for maximum growth rate decreases slower with increasing viscosity.

Equation (14) can be written as

η(α) = η0
1 + λ2αS

1 + λ1αS

≈
{
η0

(
λ2
λ1

)
, when λ2αS � 1, λ1αS � 1

η0, when λ2αS � 1, λ1αS � 1
(41)

where αS = α + ikV0 and α is the growth rate in a coordinate system fixed with the moving jet.
Equation (41) indicates that when the product of growth rate and the stress relaxation time λ1,
and the product of growth rate and deformation retardation time λ2 are both much larger than 1,

10
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Figure 5. Effect of viscosity on growth rate for a non-Newtonian jet. The parameters are: a =
9.21 × 10−4 m, ρ = 1000 kg m−3, σ 0 = 70.5 × 10−3 N m−1, λ1 = 0.1 s and λ2 = 0.01 s. The
corresponding dimensionless parameters are: λ̄ = 0.1 and Z = 0.43, El = 12.97 for η0 = 0.11,
Z = 2.158, El = 64.85 for η0 = 0.55, and Z = 4.37, El = 129.68 for η0 = 1.1.
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Figure 6. Effect of viscosity (normalized wave number) on location of maximum growth rate.
The parameters are given in figure 4 for the Newtonian liquid and in figure 5 for non-Newtonian
liquid.

the jet behaves like a Newtonian fluid with its viscosity modified as η = η0
(

λ2
λ1

)
. Furthermore,

η = η0 when λ2 = λ1 or when the product of growth rate and the stress relaxation time, and
the product of growth rate and the deformation retardation time are both much smaller than 1.
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Figure 7. Normalized viscosity as a function of growth rate and relaxation and retardation rate.
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Figure 8. Normalized growth rate, ᾱ as a function of dimensionless wave number, ka. The
dimensionless parameters as El = 4 and λ̄ = 0.1.

Figure 7 shows the apparent viscosity η, normalized by η0
(

λ2
λ1

)
as a function of αS and λ2

λ1
. It

is clear that for most of the range of variables considered, the normalized apparent viscosity
is close to 1.

In figure 8, the sensitivity of the normalized growth rate to the Ohnersorge number Z is
presented. The elastic number El is equal to 4. The ratio of deformation retardation to stress
relaxation time λ̄ is equal to 0.1. Since the Ohnersorge number denotes the ratio of viscous
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Figure 9. Normalized growth rate, ᾱ as a function of dimensionless wave number, ka. The
dimensionless parameters as Z = 0.535 and λ̄ = 0.1.

forces to surface tension force, a smaller Ohnersorge number indicates a smaller viscous force
in comparison to the surface tension force. Figure 8 shows that in such a case (smaller Z) the
normalized growth rate is higher. This makes sense since surface tension is responsible for
driving the jet breakup.

In figure 9, the sensitivity of the normalized growth rate to the elastic number El is
presented. The Ohnersorge number Z is equal to 0.535. The ratio of deformation retardation
to stress relaxation time λ̄ is equal to 0.1. The elastic number El represents the ratio of viscous
and elastic time of the liquid jet. Figure 9 shows that a smaller elastic number yields a higher
normalized growth rate.

We emphasize that slender jet theories are powerful methods in the description of local
structures in pinching phenomena. In capillary instability phenomena in three dimensions,
slender jet theories provide simplified sets of evolution equations which can be analyzed for
breakup. The present approach corresponds to a different physical setup. If the jet is allowed
to undergo natural growth without any external forces and linear waves are at first important,
then linear theory can be used to predict a maximally growing wave. As mentioned above,
this wave has wavelength in the order of the undisturbed jet radius, so when the evolution
enters the nonlinear regime, the interfacial waves have axial length scales comparable to the
undisturbed jet radius. The slender jet approximation may not be appropriate, therefore, for
the total duration of the evolution to breakup, even though it is appropriate locally at breakup.
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